As a foreword, I'd like to say that this tool is not meant for beginners and even advanced rippers are gonna have some difficulties.





One not so easy part is to properly setup the softwares. I won't help anybody to do this, pointers are provided, RTFM :)





But the most difficult part will be the choice of the parameters for LoMo, HiMo and Cutoff. It depends heavily on your rip


project and I won't be able to help much here. Maybe when we all have gathered enough experiences it will be possible to write


some guideline about it, but in the meantime, you're on your own, left alone in dark. :p

















What is VKI ?





VKI stands for Variable Keyframe Interval. It's an encoding technique based on the DivX ;-) Low Motion codec.








What's the point ?





DivX ;-) Low Motion has one big default in my opinion: it doesn't synchronize keyframes with scene changes. It results following


"problems".





�einbetten Paint.Picture Object1 ���


In this diagram, you can see what happens when a scene change occurs between 2 keyframes. There's a quality drop because


the codec has to maintain the fixed average bitrate (red curve). If the bitrate has been set high enough (green curve), it won't be


noticeable, but it's clearly overconsuming databits most of the time. If the bitrate has not been set high enough, some pixelization


will be noticeable a short instant.





Inserting a keyframe when there's no scene change is wastefull too, because keyframes are usually a lot bigger than deltaframes.


So, using keyframes when they don't improve visual quality is needless.








What can be expected from VKI ?





Beside a small improvement in terms of size (about 3% gain), the main benefit of this technique is an almost perfect rendering 


of low motion scenes at the lowest possible bitrate.








How does VKI its job ?





Fairly simple. To begin with, it uses a scene change detector. Whenever a scene change occurs, a keyframe is inserted. It also


uses another algorythm that simply prescribe that, if a deltaframe is bigger in size than the last keyframe, the frame is reencoded


to a keyframe. In 95% of the cases, the resulting keyframe is less big than the original delta. And we have the benefit of having a


fresh keyframe for the next frames to encode.








What is MM4 ?





MM4 stands for Mixed MPEG 4. It's a technique involving the mixing of DivX ;-) Low Motion encoded sequences with


DivX ;-) Fast Motion encoded ones. 








Why use MM4 ?





A diagram will make you easily understand (NOTE: this diagram only reflects my ripping experience)





�einbetten Paint.Picture Object1 ���





It demonstrates the performance of the respective codecs.





The green curve represents the DivX ;-) Low Motion codec alone. There are two major problems with it. First it's not very 


adaptative and fails specially with high motion scenes. Second, data bits are wasted in very low motion scenes, often because


of misplaced keyframes.





The red curve represents the DivX ;-) Fast Motion codec. This codec works great in high motion sequences, but has a big


drawback, it overcompresses low motion ones.





The blue curve represents VKI. Rendering of low and medium motion scenes is pretty good, but data bits consumption goes


through the roof in high motion sequences.








In conclusion, the best databits usage consists in applying VKI (which based on DivX ;-) Low Motion) and DivX ;-) Fast Motion


where needed. This is why we need to switch from one to the other while encoding to a DivX movie. The drawback of this method


is that both VKI and Fast Motion are pretty unpredictable in terms of final size.











Prerequisite :





You're supposed to be a not completely unexperimented ripper and to have installed on your system :





- VirtualDub 1.4c


- Avisynth 0.3





as source for avisynth, you can use





- LSX-MPEG player (consumes a lot of memory, seems unstable, but allows seeking and selecting in VirtualDub)


- FlasKMPEG with the avisynth output plugin (convinient, since you can easily resize, crop, deinterlace, etc)





For directions about how to install and configure these softwares, please refer to their respective documentations and also visit


http://go.to/doom9











Version history :








12/08/2000: beta7


corrected a bug that caused crashes when using resizing/cropping filters


12/02/2000: beta6


after a long night of debugging, 2 major bugs removed. The first one was causing crashes when using filters. The second


	one was present since beta 1 and was causing freezes if the PC was fast enough to fill the second level cache buffers


	before the end of the first encoding loop (that's the reason why I couldn't reproduce it easily, my box is rather slow)


12/01/2000: beta5


filters should work now


11/22/2000: beta 3


I've installed VC++ SP4, so there shouldn't be any problem more on this side. Hope this will solve the problems


	encountered with Win2K. (btw, a beta-tester reported the software doesn't crash anymore when the virtualdub.dbg file


	is renamed to something else)


The resulting executable is bigger because I've included the 'debug' version instead of the


	fully optimized 'release' one. I hope we'll get "good" memory dumps to analyze when it crashes.


reworked a bit the switching algorythms.


added another scene change detector (currently not configurable) for HiMo sequences.


11/20/2000: 


keyframes generated by the scene change detector are now drawn in yellow instead of red.


reworked a bit the switch back to LoMo. It was happening a bit too early.


11/19/2000: 


first release











Installation:





Just copy the executable in the directory where your regular VirtualDub 1.4c is installed and create a convinient shortcut on the


desktop.











Encoding with VirtualDub-VKI-MM4:








Create an AVS script to load the vobs in VDub





If you're using the LSX-MPEG player as a DirectShow source, you'd write in a text file (called 'dxsource.avs' for instance) with


a content like following example :





DirectShowSource("l:\rippak\vobs\matrix.vob")+DirectShowSource("l:\rippak\vobs\matrix_1.vob")+DirectShowSource("l:\rippak\vobs\matrix_2.vob")+DirectShowSource("l:\rippak\vobs\matrix_3.vob")+DirectShowSource("l:\rippak\vobs\matrix_4.vob")


BilinearResize(640,360)


Crop(0,44,640,272)





Resizing and cropping may be done in the script, but you can also use the filters in VirtualDub.





But, there's a better solution in term of performance. You can set up FlasKMPEG to be an avisynth IPC source. Please read


http://doom9.excelland.com/basic_avisynth_setup.htm?REC=0 for more information. In this case, the script would be :





IPCSource("whatever_you_chose_in_FlasK")








Launch the modified VirtualDub and load the AVS script





LSX-MPEG player users: yes, I know, it's slow. It is not meant to be a DVD player. But if you find a way to use any other faster


splitter/decoder that can be used as a DirectShowSource, please let me know :)





Those you have set up FlasKMPEG will notice some differences. You won't be able to seek or select a portion to encode.


I guess, the best solution is to make some tests with LSX in order to find the right parameters, and then to use FlasK to do the


work.








Configure the scene change detector





In Options/Preferences, select the Scene tab





�





You can play a bit with them before encoding, use the buttons with the green-red rectangles and you'll see how it works.





The standard values 206/64 seems to work well in the most cases. Use a stronger interframe if the movie is darker than usual


(I used 224 for The Matrix for instance)








No audio





Set Audio processing to no audio. With LSX-MPEG player you can't process it anyway. And I don't know what would happen


with my modified engine, but it will probably screw up something. I'm working on it, but it's no priority for me, cause I consider


that audio should always be processed separately (for normalizing and such)





Filters





Filters should work now.








Select the LoMo codec





Of course, DivX ;-) Low Motion





�





Use a big value for the keyframe interval, 30 secs for instance. 





Use a very low value for the bitrate. The codec doesn't have the same comportement when used through that engine. Set it to


75%-85% of your targeted bitrate and make some tests on movie segments. For Matrix I used 460 Kbits/s, because of the


constraint to fit 130 mins in one CD...








Select the HiMo codec





Naturally, the DivX ;-) Fast Motion one.





�





Use a big value for the keyframe, 15 secs seems to be good.





For the bitrate, I can't give a precise advice. I've finally used 900 for the Matrix. You'd make some tests too...








Configure the the switching parameters





�





Self explaining.





I'm currently playing with these parameters to find the best ones. Depends on the movie of course, like the HiMo bitrate.


Currently, this value aren't interpreted correctly if framerate is not 24fps. So you have to compute a bit to find the "real" value.


Use the formula, Y = (X / fps) x 24.


For the Matrix rip (PAL 25 fps), I have used 768/768 (which in fact is 800/800).








Please don't hesitate to experiment and tell me about your findings.








Select a range





Specially when using FlasK, you should set the range of frames to be encoded. Personally I always work like this and never had


any Audio/Video synch problems with this technique:





- get the VOBs decrypted


- get a new set of VOBs with vstrip (or whatever tool u use), so that you only have 1 video stream and 1 audio stream


	(note: sure, FlasK can do ifo parsing, but it fails sometimes, so I prefer not to use it)


- first work on the soundtrack: extract, normalize and encode to mp3 with whatever tools you want





Once this is done you know the exact length in time of the soundtrack (precise to the ms). From this value you can calculate


exactly how many video frames you need. 2 examples :





Length is 132mins 35.552, that is 7955,552 seconds. Framerate is 23.976fps. So I need to multiply by 24000 and divide by 1001


(that's the "real" values) and it gives 190742,5055. So I need 190743 frames.





Length is 117min 3.360, that is 7023,36 seconds. Framerate is 25fps (PAL). So I need to multiply by 25, that gives exactly


175584 frames.














Now, you're ready to 





Launch the Dub





Just save to AVI and look at the video tab of the VirtualDub Status window





� � 





Some explanations about the engine:





The green bars in the histogram show you when the HiMo has kicked in.





The red and yellow bars are keyframes. They are generated in three cases


when the scene change detector sees one (bar is yellow in this case only),


when the deltaframe size is bigger than the last keyframe size,


(in 95% of the cases, the resulting keyframe is less big than the delta)


when the codec generates one (based on the value set in the configuration dialog).


(should happen very rarely if you set it high enough, and you should set it high)





Same process is applied in both low and fast mode.











Last recommendation : use the regular VirtualDub to edit your AVI files, this one could be fucked up by my hacks.





